Practice Set For Strength of Materials

 

📘 PRACTICE SET–1

Stress, Strain & Elastic Constants (10 MCQs with detailed answers)


1. A bar of length 2 m elongates by 1 mm under load. Find the strain.

A) 0.002
B) 0.0005
C) 0.001
D) 0.005

Ans: B

Explanation:

ε=ΔLL=1 mm2000 mm=0.0005\varepsilon = \frac{\Delta L}{L}=\frac{1\text{ mm}}{2000\text{ mm}}=0.0005

Strain is dimensionless.


2. A rod of area 400 mm² carries a load of 80 kN. Stress is

A) 100 MPa
B) 150 MPa
C) 200 MPa
D) 250 MPa

Ans: C

Explanation:

σ=PA=80×103400=200 N/mm2=200 MPa\sigma=\frac{P}{A}=\frac{80\times10^3}{400}=200\text{ N/mm}^2=200\text{ MPa}

3. Young’s modulus represents

A) Strength
B) Stiffness
C) Toughness
D) Ductility

Ans: B

Explanation:
Young’s modulus E=stressstrainE=\frac{\text{stress}}{\text{strain}}.
Higher E → less deformation → stiffer material.


4. If Poisson’s ratio μ = 0.5, the material is

A) Brittle
B) Plastic
C) Incompressible
D) Perfectly elastic

Ans: C

Explanation:

Volumetric strain=(12μ)ε\text{Volumetric strain}=(1-2\mu)\varepsilon

If μ = 0.5 → volumetric strain = 0 → no volume change → incompressible.


5. Hooke’s law is valid up to

A) Elastic limit
B) Yield point
C) Proportional limit
D) Ultimate stress

Ans: C

Explanation:
Hooke’s law: σε\sigma \propto \varepsilon
This linear relation holds only till the proportional limit.


6. Bulk modulus relates to

A) Linear strain
B) Volumetric strain
C) Shear strain
D) Thermal strain

Ans: B

Explanation:

K=Volumetric stressVolumetric strainK=\frac{\text{Volumetric stress}}{\text{Volumetric strain}}

7. Working stress is

A) Ultimate stress × FOS
B) Ultimate stress / FOS
C) Yield stress
D) Proof stress

Ans: B

Explanation:
Design is done on safe stress:

σworking=σultimateFOS\sigma_{working}=\frac{\sigma_{ultimate}}{\text{FOS}}

8. Ductile materials fail mainly by

A) Compression
B) Shear
C) Tension
D) Torsion

Ans: C

Explanation:
Ductile materials (steel, aluminium) show large elongation in tension before failure.


9. Resilience is

A) Total energy till fracture
B) Energy stored in elastic range
C) Plastic energy
D) Impact energy

Ans: B

Explanation:
Resilience = elastic strain energy stored and released on unloading.


10. Toughness equals area under

A) Elastic part of curve
B) Plastic part
C) Entire stress–strain curve
D) Yield region

Ans: C

Explanation:
Toughness = total energy absorbed before fracture → whole curve.


📘 PRACTICE SET–2

Axial Load & Thermal Stress (10 MCQs with detailed answers)


11. Elongation of a bar depends on

A) Load only
B) Length only
C) Area only
D) Load, length, area & E

Ans: D

Explanation:

δ=PLAE\delta=\frac{PL}{AE}

All four parameters affect elongation.


12. A bar 2 m long, area 400 mm², E = 200 GPa carries 80 kN load. Elongation is

A) 0.5 mm
B) 1 mm
C) 2 mm
D) 4 mm

Ans: B

Explanation:

δ=80×103×2000400×200×103=1 mm\delta=\frac{80\times10^3\times2000}{400\times200\times10^3}=1\text{ mm}

13. Thermal strain in a bar is

A) αΔT
B) ΔT/α
C) α/ΔT
D) α²ΔT

Ans: A

Explanation:
Basic thermal expansion law:

εth=αΔT\varepsilon_{th}=\alpha \Delta T

14. Thermal stress develops when

A) Bar is free to expand
B) Expansion is restrained
C) Temperature falls
D) Bar is long

Ans: B

Explanation:
If expansion is free → no stress.
If restrained → stress develops.


15. A bar fixed at both ends is heated. Stress developed is

A) Tensile
B) Compressive
C) Shear
D) Zero

Ans: B

Explanation:
Heating → tendency to expand → restraint causes compressive stress.


16. In bars connected in series, which quantity is same?

A) Stress
B) Strain
C) Force
D) Area

Ans: C

Explanation:
Same axial force passes through each bar in series.


17. In bars connected in parallel, which quantity is same?

A) Stress
B) Strain
C) Force
D) Area

Ans: B

Explanation:
Ends move together → equal elongation → same strain.


18. Thermal stress in a fully restrained bar is

A) EαΔT
B) αΔT/E
C) ΔT/Eα
D) E/αΔT

Ans: A

Explanation:

σ=EαΔT\sigma=E\alpha\Delta T

19. Thermal stress does NOT depend on

A) E
B) α
C) ΔT
D) Length

Ans: D

Explanation:
From σ = EαΔT → length does not appear.


20. Strain energy in axially loaded bar is

A) PL/AE
B) P²L/2AE
C) P²L/AE
D) PL/2AE

Ans: B

Explanation:

U=Pδ2=P2PLAE=P2L2AEU=\frac{P\delta}{2}=\frac{P}{2}\cdot\frac{PL}{AE}=\frac{P^2L}{2AE}

📘 PRACTICE SET–3

Torsion of Shafts (10 MCQs with detailed answers)


21. Torsion equation is

A) M/I = σ/y
B) T/J = τ/R = Gθ/L
C) P/A
D) σ = Eε

Ans: B

Explanation:
This is the fundamental torsion relation for circular shafts.


22. Shear stress in a solid shaft varies

A) Uniformly
B) Linearly with radius
C) Parabolically
D) Randomly

Ans: B

Explanation:

τ=TrJτr\tau=\frac{Tr}{J}\Rightarrow \tau \propto r

23. Maximum shear stress in a solid shaft occurs at

A) Centre
B) Outer surface
C) Mid-radius
D) Neutral axis

Ans: B

Explanation:
Maximum radius → maximum shear stress.


24. Polar moment of inertia is denoted by

A) I
B) Z
C) J
D) A

Ans: C

Explanation:
JJ is used in torsion equations.


25. Torsional rigidity of a shaft is

A) EI
B) EA
C) GJ
D) EJ

Ans: C

Explanation:
Resistance to twisting = GJ.


26. Power transmitted by a shaft is

A) NT
B) 2πNT/60
C) T/N
D) N/T

Ans: B

Explanation:

P=2πNT60P=\frac{2\pi NT}{60}

27. A shaft transmits same power at double speed. New torque is

A) Same
B) Double
C) Half
D) Four times

Ans: C

Explanation:

PNTT1NP\propto NT \Rightarrow T\propto \frac{1}{N}

If N doubles → T halves.


28. A shaft under pure torsion experiences

A) Normal stress only
B) Shear stress only
C) Both stresses
D) No stress

Ans: B

Explanation:
Torsion produces only shear stress.


29. Hollow shaft is preferred over solid because

A) Cheaper
B) Less length
C) Higher strength-to-weight ratio
D) Less stress

Ans: C

Explanation:
Material is away from centre → higher polar moment → more torque capacity for same weight.


30. Failure theory used for ductile shafts is

A) Rankine
B) Tresca
C) Coulomb
D) Mohr

Ans: B

Explanation:
Ductile materials fail by shearMaximum shear stress theory (Tresca) is used.

Post a Comment

Previous Post Next Post