SSC JE – Strength of Materials Full Mock Test: 100 MCQs with Solutions

 

SSC JE – Strength of Materials

Full Mock Test: 100 MCQs with Solutions


🔹 PART–A: Stress, Strain & Elastic Constants


1. A bar of area 500 mm² carries 100 kN. Stress is
A) 100 MPa B) 150 MPa C) 200 MPa D) 250 MPa
Ans: C
Sol: σ=P/A=100000/500=200\sigma=P/A=100000/500=200 N/mm² = 200 MPa.


2. A bar elongates 2 mm over 2 m. Strain is
A) 0.001 B) 0.002 C) 0.0005 D) 0.005
Ans: A
Sol: ε=2/2000=0.001\varepsilon=2/2000=0.001.


3. Young’s modulus measures
A) Strength B) Stiffness C) Toughness D) Ductility
Ans: B
Sol: Higher E → less deformation.


4. If μ = 0.5, material is
A) Brittle B) Plastic C) Incompressible D) Rigid
Ans: C
Sol: Volumetric strain =(12μ)ε=0=(1-2\mu)\varepsilon=0.


5. Hooke’s law is valid up to
A) Elastic limit B) Yield point C) Proportional limit D) Ultimate stress
Ans: C
Sol: Linear stress–strain relation holds till proportional limit.


6. Working stress equals
A) σu×\sigma_u\timesFOS
B) σu/\sigma_u/FOS
C) σy\sigma_y
D) Proof stress
Ans: B


7. Bulk modulus relates to
A) Linear strain B) Volumetric strain C) Shear strain D) Thermal strain
Ans: B


8. Ductile materials mainly fail by
A) Compression B) Shear C) Tension D) Torsion
Ans: C


9. Resilience is
A) Total energy to fracture
B) Elastic energy stored
C) Plastic energy
D) Impact energy
Ans: B


10. Toughness equals area under
A) Elastic part
B) Plastic part
C) Entire stress–strain curve
D) Yield region
Ans: C


🔹 PART–B: Axial Load & Thermal Stress


11. Elongation of bar depends on
A) P only B) L only C) A only D) P, L, A, E
Ans: D
Sol: δ=PL/AE\delta=PL/AE.


12. A bar (L=2 m, A=400 mm², E=200 GPa) carries 80 kN. Elongation =
A) 0.5 mm B) 1 mm C) 2 mm D) 4 mm
Ans: B
Sol: δ=80×103×2000400×200×103=1\delta=\frac{80\times10^3\times2000}{400\times200\times10^3}=1 mm.


13. Thermal strain is
A) αΔT B) ΔT/α C) α/ΔT D) α²ΔT
Ans: A


14. Thermal stress develops when
A) Bar is free
B) Expansion is restrained
C) Temperature falls
D) Bar is long
Ans: B


15. A bar fixed at both ends is heated. Stress is
A) Tensile B) Compressive C) Shear D) Zero
Ans: B


16. In bars in series, same quantity is
A) Stress B) Strain C) Force D) Area
Ans: C


17. In bars in parallel, same quantity is
A) Stress B) Strain C) Force D) Area
Ans: B


18. Thermal stress does NOT depend on
A) E B) α C) ΔT D) Length
Ans: D


19. Composite bars require
A) Equilibrium only
B) Compatibility only
C) Both equilibrium & compatibility
D) Geometry only
Ans: C


20. Strain energy in axially loaded bar is
A) PL/AEPL/AE
B) P2L/2AEP^2L/2AE
C) P2L/AEP^2L/AE
D) PL/2AEPL/2AE
Ans: B


🔹 PART–C: Torsion of Shafts


21. Torsion equation is
A) M/I=σ/yM/I=\sigma/y
B) T/J=τ/R=Gθ/LT/J=\tau/R=G\theta/L
C) P/AP/A
D) σ=Eε\sigma=E\varepsilon
Ans: B


22. Max shear stress in solid shaft at
A) Centre B) Outer surface C) Mid-radius D) NA
Ans: B


23. Hollow shaft preferred because
A) Cheaper
B) Less weight
C) Higher strength/weight
D) Less stress
Ans: C


24. Polar moment of inertia is
A) I B) Z C) J D) A
Ans: C


25. Torsional rigidity =
A) EI B) EA C) GJ D) EJ
Ans: C


26. Power transmitted by shaft
A) NT B) 2πNT/602\pi NT/60 C) T/N D) N/T
Ans: B


27. Same power at double speed → new torque
A) Same B) Double C) Half D) Four times
Ans: C


28. Shaft under pure torsion has
A) Normal stress only
B) Shear stress only
C) Both
D) No stress
Ans: B


29. Failure theory for ductile shaft
A) Rankine B) Tresca C) Coulomb D) Mohr
Ans: B


30. Shear stress in shaft varies
A) Uniform
B) Linearly with radius
C) Parabolic
D) Random
Ans: B


🔹 PART–D: Bending of Beams


31. Neutral axis passes through
A) Top fibre B) Bottom fibre C) Centroid D) Shear centre
Ans: C


32. Flexure formula
A) σ=M/I\sigma=M/I
B) σ=My/I\sigma=My/I
C) σ=Iy/M\sigma=Iy/M
D) σ=M/y\sigma=M/y
Ans: B


33. Max bending stress at
A) NA B) Farthest fibre C) Centroid D) Support
Ans: B


34. Section modulus
A) I/ymaxI/y_{max} B) IymaxIy_{max} C) A/yA/y D) y/Iy/I
Ans: A


35. Stronger beam section has
A) Larger area
B) Larger Z
C) Larger length
D) Larger weight
Ans: B


36. In cantilever, max BM at
A) Free end B) Fixed end C) Mid-span D) Quarter span
Ans: B


37. In SSB with UDL, max BM at
A) Supports B) Mid-span C) Quarter span D) One-third span
Ans: B


38. Point of contraflexure where
A) BM = 0 B) SF = 0 C) Stress = 0 D) Deflection = 0
Ans: A


39. In pure bending, shear force is
A) Zero B) Max C) Constant D) Negative
Ans: A


40. Condition for max BM
A) BM = 0 B) SF = 0 C) Load = 0 D) Stress = 0
Ans: B


🔹 PART–E: Shear Stress in Beams


41. Average shear stress
A) V/AV/A B) VQ/ItVQ/It C) M/IM/I D) T/JT/J
Ans: A


42. Max shear stress in rectangular beam
A) τavg\tau_{avg}
B) 1.5τavg1.5\tau_{avg}
C) 2τavg2\tau_{avg}
D) 0.5τavg0.5\tau_{avg}
Ans: B


43. Shear stress is zero at
A) NA B) Outer surface C) Centre D) Supports
Ans: B


44. In I-section, max shear stress at
A) Flange
B) Web at NA
C) Top fibre
D) Bottom fibre
Ans: B


45. Shear stress distribution in rectangular beam
A) Uniform B) Linear C) Parabolic D) Triangular
Ans: C


🔹 PART–F: Columns & Buckling


46. Column failure mainly by
A) Crushing B) Buckling C) Shear D) Torsion
Ans: B


47. Slenderness ratio
A) L/AL/A B) L/kL/k C) A/LA/L D) I/AI/A
Ans: B


48. Euler formula valid for
A) Short B) Intermediate C) Long D) All
Ans: C


49. Effective length of fixed–fixed column
A) LL B) 2L2L C) L/2L/2 D) 2L\sqrt2L
Ans: C


50. Buckling load varies as
A) LL B) L2L^2 C) 1/L1/L D) 1/L21/L^2
Ans: D


🔹 PART–G: Strain Energy & Impact


51. Strain energy in bar
A) PL/AEPL/AE
B) P2L/2AEP^2L/2AE
C) P2L/AEP^2L/AE
D) PL/2AEPL/2AE
Ans: B


52. Suddenly applied load → max stress
A) Static B) Half static C) Double static D) Zero
Ans: C


53. Impact loading produces
A) Lower stress
B) Same stress
C) Higher stress
D) Zero stress
Ans: C


54. Proof resilience is
A) Total energy
B) Elastic energy per unit volume
C) Plastic energy
D) Impact energy
Ans: B


55. Toughness equals
A) Elastic energy
B) Plastic energy
C) Total energy to fracture
D) Impact energy
Ans: C


🔹 PART–H: Fatigue, Stress Concentration & Theories


56. Fatigue failure due to
A) Static load
B) Repeated load
C) Impact load
D) Thermal load
Ans: B


57. Endurance limit means
A) Max stress
B) Safe cyclic stress
C) Yield stress
D) Ultimate stress
Ans: B


58. Stress concentration due to
A) Uniform section
B) Sudden change in section
C) Smooth surface
D) Long length
Ans: B


59. Stress concentration factor
A) σmax/σnom\sigma_{max}/\sigma_{nom}
B) σnom/σmax\sigma_{nom}/\sigma_{max}
C) Stress/strain
D) Load/area
Ans: A


60. Fillets provided to
A) Increase stress
B) Reduce stress concentration
C) Reduce weight
D) Increase length
Ans: B


61. Tresca theory based on
A) Max principal stress
B) Max shear stress
C) Distortion energy
D) Total strain energy
Ans: B


62. Von Mises theory based on
A) Max shear stress
B) Max principal stress
C) Distortion energy
D) Total strain energy
Ans: C


63. Rankine theory best for
A) Ductile materials
B) Brittle materials
C) Rubber
D) Plastics
Ans: B


64. In biaxial stress, max shear stress
A) (σ1+σ2)/2(\sigma_1+\sigma_2)/2
B) (σ1σ2)/2(\sigma_1-\sigma_2)/2
C) σ1\sigma_1
D) σ2\sigma_2
Ans: B


65. Principal stresses act on planes where
A) Normal stress zero
B) Shear stress zero
C) Bending stress zero
D) Load zero
Ans: B


🔹 PART–I: Deflection & Misc.


66. Beam deflection varies with
A) L2L^2 B) L3L^3 C) L4L^4 D) L5L^5
Ans: C


67. Max deflection in SSB with central load
A) Quarter span B) Mid-span C) Support D) One-third span
Ans: B


68. Unit load method finds
A) Stress B) BM C) Deflection D) Torque
Ans: C


69. Shear centre is point where load causes
A) Bending only
B) No twisting
C) Shear only
D) Torsion only
Ans: B


70. Safest theory for ductile materials under combined loading
A) Rankine B) Tresca C) Von Mises D) Coulomb
Ans: C


🔹 PART–J: Rapid-Fire SSC JE Facts (71–100)

  1. Hardness = resistance to → Scratching

  2. Ductility measured by → % elongation

  3. Cast iron best in → Compression

  4. Steel is → Ductile

  5. Proof stress used when → Yield point not clear

  6. NA shifts when → Section unsymmetrical

  7. Beam under transverse load → Shear + bending stress

  8. Weakest column end condition → Fixed–free

  9. Column buckles in plane of → Minimum I

  10. Radius of gyration → √(I/A)

  11. Euler load ∝ → 1/L²

  12. Rankine formula combines → Crushing + buckling

  13. Strain energy method finds → Deflection

  14. Most dangerous load → Impact load

  15. Fatigue dangerous because → No warning before failure

  16. Stress concentration highest at → Sharp corner

  17. Tresca conservative because → Lower safe stress

  18. Von Mises best for → Ductile materials

  19. Rankine best for → Brittle materials

  20. Shear stress in shaft at centre → Zero

  21. Pure bending → Only BM acts

  22. Condition for max BM → SF = 0

  23. Slenderness ratio → L/k

  24. Spring energy → ½kδ²

  25. Perfectly plastic material → Constant stress after yield

  26. Beam of equal strength → Constant Z

  27. Safest shaft in torsion → Hollow

  28. Deflection reduces when → EI increases

  29. Plane stress occurs in → Thin plates

  30. Plane strain occurs in → Long dams

Post a Comment

Previous Post Next Post