SSC JE – Strength of Materials
Full Mock Test: 100 MCQs with Solutions
🔹 PART–A: Stress, Strain & Elastic Constants
1. A bar of area 500 mm² carries 100 kN. Stress is
A) 100 MPa B) 150 MPa C) 200 MPa D) 250 MPa
Ans: C
Sol: N/mm² = 200 MPa.
2. A bar elongates 2 mm over 2 m. Strain is
A) 0.001 B) 0.002 C) 0.0005 D) 0.005
Ans: A
Sol: .
3. Young’s modulus measures
A) Strength B) Stiffness C) Toughness D) Ductility
Ans: B
Sol: Higher E → less deformation.
4. If μ = 0.5, material is
A) Brittle B) Plastic C) Incompressible D) Rigid
Ans: C
Sol: Volumetric strain .
5. Hooke’s law is valid up to
A) Elastic limit B) Yield point C) Proportional limit D) Ultimate stress
Ans: C
Sol: Linear stress–strain relation holds till proportional limit.
6. Working stress equals
A) FOS
B) FOS
C)
D) Proof stress
Ans: B
7. Bulk modulus relates to
A) Linear strain B) Volumetric strain C) Shear strain D) Thermal strain
Ans: B
8. Ductile materials mainly fail by
A) Compression B) Shear C) Tension D) Torsion
Ans: C
9. Resilience is
A) Total energy to fracture
B) Elastic energy stored
C) Plastic energy
D) Impact energy
Ans: B
10. Toughness equals area under
A) Elastic part
B) Plastic part
C) Entire stress–strain curve
D) Yield region
Ans: C
🔹 PART–B: Axial Load & Thermal Stress
11. Elongation of bar depends on
A) P only B) L only C) A only D) P, L, A, E
Ans: D
Sol: .
12. A bar (L=2 m, A=400 mm², E=200 GPa) carries 80 kN. Elongation =
A) 0.5 mm B) 1 mm C) 2 mm D) 4 mm
Ans: B
Sol: mm.
13. Thermal strain is
A) αΔT B) ΔT/α C) α/ΔT D) α²ΔT
Ans: A
14. Thermal stress develops when
A) Bar is free
B) Expansion is restrained
C) Temperature falls
D) Bar is long
Ans: B
15. A bar fixed at both ends is heated. Stress is
A) Tensile B) Compressive C) Shear D) Zero
Ans: B
16. In bars in series, same quantity is
A) Stress B) Strain C) Force D) Area
Ans: C
17. In bars in parallel, same quantity is
A) Stress B) Strain C) Force D) Area
Ans: B
18. Thermal stress does NOT depend on
A) E B) α C) ΔT D) Length
Ans: D
19. Composite bars require
A) Equilibrium only
B) Compatibility only
C) Both equilibrium & compatibility
D) Geometry only
Ans: C
20. Strain energy in axially loaded bar is
A)
B)
C)
D)
Ans: B
🔹 PART–C: Torsion of Shafts
21. Torsion equation is
A)
B)
C)
D)
Ans: B
22. Max shear stress in solid shaft at
A) Centre B) Outer surface C) Mid-radius D) NA
Ans: B
23. Hollow shaft preferred because
A) Cheaper
B) Less weight
C) Higher strength/weight
D) Less stress
Ans: C
24. Polar moment of inertia is
A) I B) Z C) J D) A
Ans: C
25. Torsional rigidity =
A) EI B) EA C) GJ D) EJ
Ans: C
26. Power transmitted by shaft
A) NT B) C) T/N D) N/T
Ans: B
27. Same power at double speed → new torque
A) Same B) Double C) Half D) Four times
Ans: C
28. Shaft under pure torsion has
A) Normal stress only
B) Shear stress only
C) Both
D) No stress
Ans: B
29. Failure theory for ductile shaft
A) Rankine B) Tresca C) Coulomb D) Mohr
Ans: B
30. Shear stress in shaft varies
A) Uniform
B) Linearly with radius
C) Parabolic
D) Random
Ans: B
🔹 PART–D: Bending of Beams
31. Neutral axis passes through
A) Top fibre B) Bottom fibre C) Centroid D) Shear centre
Ans: C
32. Flexure formula
A)
B)
C)
D)
Ans: B
33. Max bending stress at
A) NA B) Farthest fibre C) Centroid D) Support
Ans: B
34. Section modulus
A) B) C) D)
Ans: A
35. Stronger beam section has
A) Larger area
B) Larger Z
C) Larger length
D) Larger weight
Ans: B
36. In cantilever, max BM at
A) Free end B) Fixed end C) Mid-span D) Quarter span
Ans: B
37. In SSB with UDL, max BM at
A) Supports B) Mid-span C) Quarter span D) One-third span
Ans: B
38. Point of contraflexure where
A) BM = 0 B) SF = 0 C) Stress = 0 D) Deflection = 0
Ans: A
39. In pure bending, shear force is
A) Zero B) Max C) Constant D) Negative
Ans: A
40. Condition for max BM
A) BM = 0 B) SF = 0 C) Load = 0 D) Stress = 0
Ans: B
🔹 PART–E: Shear Stress in Beams
41. Average shear stress
A) B) C) D)
Ans: A
42. Max shear stress in rectangular beam
A)
B)
C)
D)
Ans: B
43. Shear stress is zero at
A) NA B) Outer surface C) Centre D) Supports
Ans: B
44. In I-section, max shear stress at
A) Flange
B) Web at NA
C) Top fibre
D) Bottom fibre
Ans: B
45. Shear stress distribution in rectangular beam
A) Uniform B) Linear C) Parabolic D) Triangular
Ans: C
🔹 PART–F: Columns & Buckling
46. Column failure mainly by
A) Crushing B) Buckling C) Shear D) Torsion
Ans: B
47. Slenderness ratio
A) B) C) D)
Ans: B
48. Euler formula valid for
A) Short B) Intermediate C) Long D) All
Ans: C
49. Effective length of fixed–fixed column
A) B) C) D)
Ans: C
50. Buckling load varies as
A) B) C) D)
Ans: D
🔹 PART–G: Strain Energy & Impact
51. Strain energy in bar
A)
B)
C)
D)
Ans: B
52. Suddenly applied load → max stress
A) Static B) Half static C) Double static D) Zero
Ans: C
53. Impact loading produces
A) Lower stress
B) Same stress
C) Higher stress
D) Zero stress
Ans: C
54. Proof resilience is
A) Total energy
B) Elastic energy per unit volume
C) Plastic energy
D) Impact energy
Ans: B
55. Toughness equals
A) Elastic energy
B) Plastic energy
C) Total energy to fracture
D) Impact energy
Ans: C
🔹 PART–H: Fatigue, Stress Concentration & Theories
56. Fatigue failure due to
A) Static load
B) Repeated load
C) Impact load
D) Thermal load
Ans: B
57. Endurance limit means
A) Max stress
B) Safe cyclic stress
C) Yield stress
D) Ultimate stress
Ans: B
58. Stress concentration due to
A) Uniform section
B) Sudden change in section
C) Smooth surface
D) Long length
Ans: B
59. Stress concentration factor
A)
B)
C) Stress/strain
D) Load/area
Ans: A
60. Fillets provided to
A) Increase stress
B) Reduce stress concentration
C) Reduce weight
D) Increase length
Ans: B
61. Tresca theory based on
A) Max principal stress
B) Max shear stress
C) Distortion energy
D) Total strain energy
Ans: B
62. Von Mises theory based on
A) Max shear stress
B) Max principal stress
C) Distortion energy
D) Total strain energy
Ans: C
63. Rankine theory best for
A) Ductile materials
B) Brittle materials
C) Rubber
D) Plastics
Ans: B
64. In biaxial stress, max shear stress
A)
B)
C)
D)
Ans: B
65. Principal stresses act on planes where
A) Normal stress zero
B) Shear stress zero
C) Bending stress zero
D) Load zero
Ans: B
🔹 PART–I: Deflection & Misc.
66. Beam deflection varies with
A) B) C) D)
Ans: C
67. Max deflection in SSB with central load
A) Quarter span B) Mid-span C) Support D) One-third span
Ans: B
68. Unit load method finds
A) Stress B) BM C) Deflection D) Torque
Ans: C
69. Shear centre is point where load causes
A) Bending only
B) No twisting
C) Shear only
D) Torsion only
Ans: B
70. Safest theory for ductile materials under combined loading
A) Rankine B) Tresca C) Von Mises D) Coulomb
Ans: C
🔹 PART–J: Rapid-Fire SSC JE Facts (71–100)
-
Hardness = resistance to → Scratching
-
Ductility measured by → % elongation
-
Cast iron best in → Compression
-
Steel is → Ductile
-
Proof stress used when → Yield point not clear
-
NA shifts when → Section unsymmetrical
-
Beam under transverse load → Shear + bending stress
-
Weakest column end condition → Fixed–free
-
Column buckles in plane of → Minimum I
-
Radius of gyration → √(I/A)
-
Euler load ∝ → 1/L²
-
Rankine formula combines → Crushing + buckling
-
Strain energy method finds → Deflection
-
Most dangerous load → Impact load
-
Fatigue dangerous because → No warning before failure
-
Stress concentration highest at → Sharp corner
-
Tresca conservative because → Lower safe stress
-
Von Mises best for → Ductile materials
-
Rankine best for → Brittle materials
-
Shear stress in shaft at centre → Zero
-
Pure bending → Only BM acts
-
Condition for max BM → SF = 0
-
Slenderness ratio → L/k
-
Spring energy → ½kδ²
-
Perfectly plastic material → Constant stress after yield
-
Beam of equal strength → Constant Z
-
Safest shaft in torsion → Hollow
-
Deflection reduces when → EI increases
-
Plane stress occurs in → Thin plates
-
Plane strain occurs in → Long dams